
All-in-one Starter Kit for Arduino

All-in-one Starter Kit for Arduino
User Manual

Table of Contents
Introduction

List of Sensors

Lessons

Getting Started

01

03

04

12

15

15

17

20

24

27

30

34

37

42

47

51

55

59

65

72

80

84

88

92

96

102

How to Use the Serial Monitor Tool

Lesson 1 - LED Control

Lesson 2 - Button Control LED

Lesson 3 - LED Breathing Light

Lesson 4 - LCD display

Lesson 5 - Moisture Monitor

Lesson 6 - Intelligent street light

Lesson 7 - Ultrasonic ranging display

Lesson 8 - Obstacle close range Alarm

Lesson 9 - Plant watering reminder system

Lesson 10 - Brightness display

Lesson 11 - Temperature&Humidity detecting system

Lesson 12 - Servo control

Lesson 13 - IR control LED

Lesson 14 - Weather reminder

Lesson 15 - Servo angle control

Lesson 16 - Polite automatic door

Lesson 17 - PIR control light

Lesson 18 - Sound Reminder

Lesson 19 - Calculation ofacceleration

Lesson 20 - Smart corridor light

Lesson 21 - Simple calculator

Introduction

Welcome to read the user manual of All-in-one Starter Kit for Arduino. Let's start learning

about the All-in-one Starter Kit for Arduino development board and how to use the

sensors now!

Don't worry, this development board comes with 21 easy-to-follow, fun and inspiring

lessons that take you step by step through your knowledge. Here, you will be taken to

familiarize yourself with the electronic modules, exercise your logical thinking, enhance

your creative ideas, and program the functions of these electronic modules.

From the very beginning to understand the installation of Arduino software, then

introduce the Arduino development board and various sensors, then learn the program-

ming functions of these sensors and the programming language used, and finally how to

realize the specific applications of these sensors. Each step of the explanation is very

clear, even if you are a beginner, you can quickly master Arduino programming.

The all-in-one Starter Kit for Arduino product offers 15 electronic modules, each module

has its own unique features and functionality, designed for beginners and ideal for

getting started. In short, by learning this development board, you will learn the basics

and principles of sensors, understand important concepts such as digital and analog

signals, analog-to-digital conversion, programming logic, and learn how to use some of

the complex electronic modules. Most importantly, you will start learning Arduino

programming, which will help improve your logical thinking skills.

In the programming section, we will use Arduino software for programming.Arduino

platform is one of the most popular open source platforms and easy to use. It contains

global hardware resources including hardware (various models of Arduino boards) and

software (Arduino IDE), which is one of the best choices for programming learning.

Temperature& Humidity Sensor x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

x1

Button

Ultrasonic Ranging Sensor

Light Sensor

Linear Potentiometer

LED

Buzzer

LCD

Infrared Remote Receiver

Relay

Servo motor

Sound Sensor

3 Axis Accelerometer

PIR

Moisture Sensor

List of Sensors

Download Arduino in Windows system

Getting Started
Installing Arduino IDE

STEP 1:
Login to Arduino official website, download Arduino, click SOFTWARE.
Arduino official website: https://www.arduino.cc/

STEP 2:
Select your computer's corresponding system to download, such as Window system.

STEP 3:
Click JUST DOWNLOAD and select the save location to start the download.

STEP 4:
1.When installing Arduino, please locate the executable file with the .exe extension
within the folder where you previously saved, which is the Arduino installation package.

2. After double-clicking the installation
package, this page will appear.
Click on "I Agree".

4.Click on 'Browse' to select the installation location, it is recommended to install it on
any drive other than the C: drive. Then click 'Install'.

3.Check all options by default and click
Next.

5.Installation Complete

Download Arduino in Linux system

STEP 1:
Login to Arduino official website, download Arduino, click ‘SOFTWARE’.
Arduino official website:https://www.arduino.cc/

STEP 2:
Select the version of Linux that corresponds to your computer for download.

STEP 3:
After clicking 'JUST DOWNLOAD', select the save location to begin the download process.

You are now ready to install the Arduino IDE. Please navigate to the download folder
where you saved the Arduino archive (assuming the directory is: /home/username/
Downloads). You will need to extract the downloaded Arduino archive. You can do this by
launching a terminal using the Ctrl+Alt+T shortcut and then running the following
command to change to the Downloads folder:

To extract the archive folder, please run the following command in the terminal:
tar xf [Compressed-filename]

Then, in the terminal, run the following command to navigate to the newly extracted
Arduino folder:

You can try executing the `ls -l` command in the terminal to view the file list in the Arduino
folder, and then locate the install.sh installation script that we are about to install.

cd [Uncompressed-foldername]

cd /home/username/Downloads

STEP 4:
Install Arduino IDE

Download Arduino in MacOS system

STEP 1:
Login to Arduino official website, download Arduino, click ‘SOFTWARE’.
Arduino official website: https://www.arduino.cc/

We are now ready to install Arduino. Execute the following command in the terminal with
sudo privileges to install Arduino:
Please wait for a period of time until the installation is complete.

sudo ./install.sh

STEP 2:
Select the Mac version of your computer to download.

STEP 3:
After the download is successful, double-click to install.

How to Use the Serial Monitor Tool
1.Open the Arduino IDE.
2.Click on the "Serial Monitor" button. Note that you need to have a serial device
connected to open it; otherwise, the Serial Monitor tool will not be accessible.

Lesson 1 - LED Control
Introduction
In this lesson, we will explore how to control LED lights. By programming the LEDs, we
are able to make them blink alternately at certain intervals.

Setting the baud rate.

The baud rate setting should be the same as that initialized by the code to communicate
properly.

Lessons

Hardware required

All_in_one Starter Kit for Arduino x1
USB Cable x1

We will see that the LED will light up for a second and go out for a second, and the
process will continue to cycle. If the LED does not work as expected, make sure the
program is running correctly.

int LedPin = 10;
Variables serve as placeholders for values that may change within the code. It is
necessary to "declare" a variable before using it. In this case, we have declared a variable
of type `LedPin` as an `Int` (integer) and assigned it the value of 8, thereby mapping the
LED to pin 8. Please note that variable names are case-sensitive!

Hardware schematic

What will you see

Complete Code

Main Code Explanation

pinMode(LedPin, OUTPUT);
After confirming the pin, we need to configure the pin's mode. Pins can operate in either

Lesson 2 - Button Control Led
Introduction
When a button is pressed, it displays a high signal level, and when released, it shows a
low signal level. In this lesson, we will use the button to control the state of the LED light:
the LED light turns on when the button is pressed and turns off when the button is
released.

All_in_one Starter Kit for Arduino x1
USB Cable x1

When you hold down the button, the LED stays on, and when you release your hand, the
LED goes out. If the LED is not working as expected, please ensure that the program is
running correctly.

Hardware required

Hardware schematic

What will you see

input mode or output mode; in this case, we are using output mode.

digitalWrite(LedPin, HIGH); digitalWrite(LedPin, LOW);
Having completed the preliminary operations to control the pin, you can now control the
output voltage level of the specified pin using the digital write function. When set to a high
level, the pin outputs a high voltage level, causing the LED to light up; when set to a low
level, the pin outputs a low voltage level, causing the LED to turn off.

Complete Code

int buttonPin = 7;int LedPin = 10;
Variables are placeholders for values that may change within the code. Variables must
be introduced or "declared" before they are used. In this case, we have declared two
variables, one of type `LedPin` and another of type `buttonPin`.
Assign integer values of type `int` to be 10 and 7, respectively, so that the LED
corresponds to pin 10, and the button is connected to pin 8. Remember that variable
names are case-sensitive!

pinMode(LedPin, OUTPUT);pinMode(buttonPin, INPUT);
Here, we use the `pinMode` function to assign modes to the LED pin and the button pin.
Configure `LedPin` in output mode and `buttonPin` in input mode.

if (digitalRead(buttonPin)) digitalWrite(LedPin, LOW); else digitalWrite(LedPin, HIGH);
The `if` statement determines whether to turn the LED on and off based on the value
returned by the `digitalRead` function when reading the `buttonPin` pin. When it returns
`true`, `buttonPin` is in a high state, meaning it is not pressed. At this time, the
`digitalWrite` function is used to pull the `LedPin` pin high, causing the LED to turn off.
When it returns `false`, `buttonPin` is in a low state, meaning the button has been
pressed. At this time, the `digitalWrite` function is used to pull the `LedPin` pin high,
causing the LED to light up.

Main Code Explanation

Lesson 3 - Breathing LED

Introduction
In this lesson, we will use a potentiometer with a maximum resistance of 10kΩ to create
a breathing LED light effect. As you slide it from left to right, its output voltage will range

from 0v to 5v (VCC). In this course section, we will adjust the LED light using the
potentiometer to achieve a breathing light effect!

Hardware required

Hardware schematic

What will you see

Complete Code

All_in_one Starter Kit for Arduino x1
USB Cable x1

As the slider of the potentiometer is moved, the brightness of the LED light will change
accordingly. When slid to the right to its maximum position, the LED will be at its brightest;
when slid to the left to its minimum, the LED will turn off. If the LED is not working as
expected, please ensure that the program is running correctly.

Main Code Explanation

int LinearPin = A0;int LedPin = 10;
Variables are placeholders for values that may change within the code. Variables must
be introduced or "declared" before they are used. In this context, we have declared two
variables, one of type `LedPin` and another of type `LinearPin`.
Assign the values 10 and A0 to integer types (Int), with the LED corresponding to pin 10
and the sliding module to pin A0. Remember, variable names are case-sensitive!

pinMode(LedPin, OUTPUT);pinMode(LinearPin , INPUT);
We utilize the `pinMode` function to assign modes to the LED pin and the potentiometer
pin. The `LedPin` is configured in output mode, while the `LinearPin` is set to input mode.

int adcValue;int mappedValue;
Two intermediate variables, `adcValue` and `mappedValue`, have been defined. The
`adcValue` is used to store the value read from the ADC, while `mappedValue` is used to
convert the value read from `adcValue` into a duty cycle.

int adcValue;int mappedValue;
Two intermediate variables, `adcValue` and `mappedValue`, have been defined. The
`adcValue` is used to store the value read from the ADC, while `mappedValue` is used to
convert the value read from `adcValue` into a duty cycle.

adcValue = analogRead(LinearPin); mappedValue = map(adcValue, 0, 1023, 0, 255);
The `analogRead` function is used to read the ADC value, and the `map` function is used
to transform the read ADC value.

analogWrite(LedPin, mappedValue);
After the preliminary preparations, we need to apply the obtained duty cycle value to the
LED, which can be accomplished by using the `analogWrite` function.

Lesson 4 - LCD Display
Introduction
In this lesson, we will utilize the LCD module on the development board to display text.
The LCD module is connected to the development board via the I2C communication
protocol. This LCD module is easy to operate and user-friendly.

Hardware required

All_in_one Starter Kit for Arduino x1
USB Cable x1

Hardware schematic

What will you see

Complete Code

You will see the LCD light up and display "HELLO WORLD!" on the first line. After a
one-second interval, "Bye Bye" will appear on the second line of the LCD. Another
second later, the LCD will clear the display and turn off the screen. If the LCD does not
operate as expected, please ensure that the program is running correctly.

Main Code Explanation

#include "Adafruit_LiquidCrystal.h"
Before using the LCD, we need to do some preparatory work. First, we need to import
the relevant libraries.

Adafruit_LiquidCrystal lcd(1);
Define a global variable for the LCD, and then we will use this variable to manipulate the
LCD display.

while (!lcd.begin(16, 2)) {Serial.println("Could not init backpack. Check wiring.");delay(50);}
A variable named `LCD` is used to initialize the LCD module. If the LCD initialization fails,
an error message will be repeatedly sent to the serial port until initialization is successful.

lcd.setCursor(0, 0);lcd.print("HELLO WORLD");delay(1000);
lcd.setCursor(0, 1);lcd.print("Bye Bye");
Let's familiarize ourselves with the operation process of the LCD.
First, we use the `setCursor` function to position the cursor at the 0th row and 0th column,
 which determines the starting position for the next display. This function is included in the
`Adafruit_LiquidCrystal` class. After setting the cursor position, we can display text. We
call the `lcd.print` function to show the text we wish to display. In this example, "HELLO
WORLD" is displayed on the 0th row, while "Bye Bye" is displayed on the 1st row.

lcd.clear();lcd.setBacklight(0);
After the text is displayed, it is necessary to clear the LCD screen and turn off the
backlight. We use the `lcd.clear()` function to clear the screen, followed by the
`lcd.setBacklight(0)` function to turn off the backlight.

Lesson 5 - Moisture Monitor
Introduction
In this lesson, we will use an LCD module and a soil moisture sensor to check the soil's
moisture level. When the soil moisture sensor is inserted into the soil, the LCD will
continuously display the moisture values read from the soil. We can use these numerical
values to assess the condition of the soil.

Hardware required
All_in_one Starter Kit for Arduino x1 Crowtail - Moisture Sensor x1
USB Cable x1

Note: Ensure that the interface A of the Crowtail - Moisture Sensor module matches the
one specified in the code. In this case, we are using A Sensor3.

Complete Code

What will you see
You will observe the LCD continuously displaying the values obtained from the soil
moisture sensor. If this does not occur on the LCD, please ensure that the program is
running correctly.

Main Code Explanation

int sensorPin1 = A3; int Pin1Value = 0; #include "Adafruit_LiquidCrystal.h"
Adafruit_LiquidCrystal lcd(1);

Before we start using the module, we need to do some preparatory work. First, we import
the relevant libraries, then define the LCD variable, and specify the pin used by the soil
moisture sensor module.We use the variable `sensorPin1` and assign pin A3 to it. We
also define an intermediate variable `Pin1Value` to store the value read from the soil
moisture sensor module.

while (!lcd.begin(16, 2)) {Serial.println("Could not init backpack. Check wiring.");delay(50);
 }Serial.println("Backpack init'd.");pinMode(sensorPin1, INPUT);
After the preparatory work is completed, we can begin initializing the LCD and the pins.
Using the statements mentioned above, we can initialize the LCD and configure the
 `sensorPin1` pin as an input mode.

Pin1Value = analogRead(sensorPin1);String
Pin1String = "A3:" + String(Pin1Value) ;lcd.clear();
lcd.setCursor(0, 0);lcd.print(Pin1String);
After initialization is complete, you can read the value from the soil moisture sensor using
an analog function and display it on the screen with the `lcd.print` function .Before
displaying the information, you need to set the cursor position with `lcd.setCursor(0, 0)`
and clear the screen by calling `lcd.clear()` to prevent previous data from interfering with
the current display.

Lesson 6 - Intelligent Street Light
Introduction
In this lesson, you will learn how to obtain light intensity information from a light sensor
module and how to control the LED light's on/off state based on this data. By determining
different levels of brightness, you can achieve intelligent control over the LED's operation,
smartly managing the LED's activation and deactivation to prevent unnecessary energy
consumption and achieve energy-saving goals.

Hardware required
All_in_one Starter Kit for Arduino x1
USB Cable x1

Hardware required

What will you see

Complete Code

When you cover the top of the light sensor to simulate a light-deprived environment, you
will see the LED light up. When you remove your hand to simulate a lighted environment,
the LED will turn off. If this does not happen, please check to ensure that the program is
executing correctly.

Main Code Explanation
#include <BH1750.h>BH1750 lightMeter(0x5c);float lux;int LedPin = 10;
Building upon the introduction of the relevant libraries, we have defined a variable for the
light-sensing module, "photometer", and stored the luminance data in the variable "lux".
Concurrently, we have also defined a pin variable for controlling the LED, "LedPin".

Wire.begin(); if (lightMeter.begin(BH1750::CONTINUOUS_HIGH_RES_MODE, 0x5c, &
Wire)) {
Serial.println(F("BH1750 Advanced begin")); } else {Serial.println(F("Error initialising
BH1750"));}
Before utilizing the Light module, it is necessary to initialize the IIC (I2C) communication
protocol and the Light module itself. Once the initialization is complete, we can proceed
to read data from the Light module via the IIC interface.

if (lightMeter.measurementReady(true)) {lux = lightMeter.readLightLevel();}
if (lux <= 100)digitalWrite(LedPin, HIGH);else digitalWrite(LedPin, LOW);
We initially employ an if statement to ascertain whether the return value of the function
"lightMeter.measurementReady(true)" indicates that data can be read. If data is available
for reading, we then use the variable `lux` to store the data retrieved by the function
"lightMeter.readLightLevel()". Following this, we utilize another if statement to evaluate
the magnitude of the reading. Generally, readings below 100 are considered to represent
an environment with insufficient or no light, in which case we set the LED pin to a high
level to turn on the LED; conversely, readings above 100 are deemed to indicate a well-lit
environment, and in such cases, we set the LED pin to a low level to extinguish the LED.

Lesson 7 - Ultrasonic Ranging Display

Introduction

Hardware required

Hardware schematic

In this lesson, we will learn how to utilize an ultrasonic module. With the help of this
module, we can measure the distance between a flat surface in front of the module and
the module itself. We can create an ultrasonic distance meter that will display the
measured distance on an LCD module.

All_in_one Starter Kit for Arduino x1
USB Cable x1

What will you see

You will observe the LCD screen continuously updating with distance data measured by
the ultrasonic sensor. As the flat surface in front of the ultrasonic module moves, the
measured distance values will also change accordingly. If this phenomenon does not
occur, please check to ensure that the program is executing correctly.

Complete Code

#include "Adafruit_LiquidCrystal.h"Adafruit_LiquidCrystal lcd(1);
#include <HCSR04.h>UltraSonicDistanceSensor distanceSensor(triggerPin, echoPin);
Firstly, since we will be utilizing both the ultrasonic module and the LCD module, it is
necessary to initialize these two modules before use.
float distance = distanceSensor.measureDistanceCm();
After initializing the modules, we can proceed to read data from them. Here, we use the
function `distanceSensor.measureDistanceCm()` to read the measured distance and
store it in an intermediate variable called `distance`.
lcd.setCursor(0, 1);lcd.print(Value);
Once we have obtained the distance value, we can then display it on the LCD screen. By
calling the function `lcd.setCursor(0, 1)`, we position the cursor at the 0th column and the
1st row. Subsequently, we use the `lcd.print(Value)` function to display the distance value
on the screen.

Lesson 8 - Obstacle Close Range Alarm
Introduction
In this section, we will delve deeper into the ultrasonic module and learn how to
coordinate its operation with other modules. We will use the distance data obtained from
the ultrasonic module to control the activation and deactivation of the relay module and
the LED module, thereby implementing the function of ultrasonic obstacle avoidance.

Main Code Explanation

You will observe that as the distance measured by the ultrasonic module changes, when
the distance is less than 30 centimeters, both the relay and the LED light will activate
simultaneously, indicating the detection of an obstacle. If the distance reaches or exceeds
30 centimeters, the relay and LED light will turn off, signifying that the surrounding
environment is safe and there are no obstacles. If this process does not occur, please
verify that the program is being executed correctly.

What will you see

Complete Code

Hardware required

All_in_one Starter Kit for Arduino x1
USB Cable x1

Hardware schematic

Main Code Explanation

#include "Adafruit_LiquidCrystal.h"Adafruit_LiquidCrystal lcd(1);
#include <HCSR04.h>UltraSonicDistanceSensor distanceSensor(triggerPin, echoPin);
To begin with, we will be utilizing both an ultrasonic module and an LCD module, which
necessitates initializing these two modules before we can use them.

float distance = distanceSensor.measureDistanceCm();
After initializing the modules, we can proceed to read data from them. We use the
`measureDistanceCm()` function of the distance sensor to read the measured distance,
and then we store this value in an intermediate variable called `distance`.
if ((int)distance >= 30){lcd.setCursor(9, 0);lcd.print(">=");digitalWrite(relayPin, LOW);
digitalWrite(LedPin, LOW);}else{lcd.setCursor(9, 0);lcd.print("< ");digitalWrite(relayPin,
HIGH);
}

The `if` statement is utilized to ascertain whether the relay and LED need to be activated.
When the distance is less than 30 centimeters, the `digitalWrite(relayPin, HIGH);` and
 `digitalWrite(LedPin, HIGH);` functions are employed to activate the relay and LED,
respectively. Conversely, when the distance is greater than or equal to 30 centimeters,
the `digitalWrite(relayPin, LOW);` and `digitalWrite(LedPin, LOW);` functions are used to
deactivate the relay and LED. Additionally, the results are displayed on the LCD.

Lesson 9 - Plant Watering Reminder System
Introduction
In this lesson, we will learn how to monitor soil moisture changes using a soil moisture
sensor. When the moisture level drops to 10%, a buzzer will sound an alarm to alert you
that it's time to water the plants; when the moisture is between 10% and 20%, an LED
light will flash, indicating that the plants are slightly water-deficient and reminding you to
water them as soon as possible; when the moisture level is greater than 20%, it signifies
that the plants are in good condition and no additional watering is required.

Note: The interface to which the Crowtail - Moisture Sensor module is connected must
be consistent with the code. In this case, we are using the A Sensor3 interface for the
connection.

All_in_one Starter Kit for Arduino x1
USB Cable x1
Crowtail - Moisture Sensor x1

Hardware required

Hardware schematic

What will you see
You will observe that the LED and buzzer respond to changes in soil moisture levels.
When the buzzer sounds an alarm, it indicates that the plants are severely water-deficient
and require immediate watering; when the LED flashes, it signifies that the plants are
slightly water-deficient and need to be watered promptly; when the LED stays on
continuously, it suggests that the plants have adequate moisture and are thriving.

Complete Code

Buzzer

Main Code Explanation
/*******************Moisture*******************/
int sensorPin1 = A3;
int Pin1Value = 0;
int mappedValue;
/*******************LCD function*******************/
#include "Adafruit_LiquidCrystal.h"
Adafruit_LiquidCrystal lcd(1);
/*******************Buzzer*******************/
int buzzerPin = 3;

/*******************LED*******************/
int LedPin = 10;

Before we begin coding our plant watering reminder system, we need to define the
relevant variables. The variable `sensorPin1` represents the soil moisture sensor
connected to pin A3. `pin1Value` and `mappedValue` are intermediate variables that
store the values before and after transformation, respectively. Subsequently, we define
an `Adafruit_LiquidCrystal` class variable `lcd`, passing the argument 1 to indicate the
selection of the first address. Lastly, we define two variables: `buzzerPin` to specify the
pin connected to the buzzer, and `LedPin` for the pin connected to the LED light.

lcd.begin(16, 2); pinMode(sensorPin1, INPUT);
pinMode(LedPin, OUTPUT);pinMode(buzzerPin, OUTPUT);
Initialize the LCD, buzzer, LED, and soil moisture sensor pins. The LCD input parameters
indicate a 16-column by 2-row LCD display. Initialize the buzzer using `pinMode`, set the
LED pin to output mode, and the soil moisture sensor pin to input mode.

Pin1Value = analogRead(sensorPin1);mappedValue = map(Pin1Value, 0, 1023, 0, 100);
lcd.print(Value);if (mappedValue < 10);tone(buzzerPin, 1300);digitalWrite(LedPin, HIGH);
After initializing all sensors, obtain the soil moisture sensor value using the `analogRead`
function, and display the converted value on the LCD using the `map` function. Use `if`
statements to evaluate the values to determine whether to use the `tone` function to
make the buzzer sound, and use the `digitalWrite` function to manipulate the LED light.

Lesson 10 - Brightness Display

Introduction
In this lesson, we will learn how to control the brightness of an LED using a slide sensor,
allowing us to manually adjust the LED's brightness to our desired level.

Hardware required
All_in_one Starter Kit for Arduino x1
USB Cable x1

Hardware schematic

What will you see
We will learn how to control the brightness of an LED using a sliding sensor, and display
the brightness level, ranging from 1 to 10, on an LCD to achieve the effect of controlling
the brightness.

Complete Code

Main Code Explanation
int LinearPin = A3;int LedPin = 10;Adafruit_LiquidCrystal lcd(1);
We assign pin numbers to the sliding rheostat and define two variables, `LinearPin` and
`LedPin`, to facilitate subsequent operations on the two sensors. Lastly, do not forget to
create the LCD variable.

lcd.begin(16, 2);pinMode(LedPin, OUTPUT);pinMode(LinearPin, INPUT);
First, we initialize the LCD. Then, by using the `pinMode` function, we configure the
`LedPin` as an output mode and the `LinearPin` as an input mode. These modes are set
according to the way the sensors are used. The sliding rheostat is set to input mode
because it needs to read the varying resistance, while the LED is set to output mode
because the microcontroller needs to change its state.

int adcValue;int mappedValue;adcValue = analogRead(LinearPin);
mappedValue = map(adcValue, 0, 1023, 0, 255);analogWrite(LedPin, mappedValue);
Once the preparatory work is complete, we can begin to operate the sensors. Let's start
by defining two intermediate variables, `adcValue` and `mappedValue`. The `adcValue`
variable is used to store the raw value read from the sliding module, while the
`mappedValue` variable is used to store the value after being transformed using the
`map` function. Since the raw ADC value cannot be used directly, the `map` function is
employed for transformation. Finally, based on the transformed values, we adjust the
voltage of the LED pin through analogWrite to achieve the effect of controlling the
brightness.

mappedValue = map(adcValue, 0, 1023, 0, 10);String Value = String(mappedValue) ;
lcd.setCursor(0, 1);lcd.print(Value);
After controlling the LED's output voltage, remember that we also need to display the
brightness value on the LCD screen. Before displaying, we need to convert the raw ADC
values. Then, we use `lcd.setCursor` to position the cursor, and finally, we output the
brightness value through `lcd.print`.

Lesson 11 - Temperature&Humidity Detecting System

Introduction
In this lesson, we will introduce how to use a temperature and humidity module to
acquire temperature and humidity data and display it on the screen. With this module, we
can obtain real-time local temperature and humidity data, which will be beneficial for our
subsequent research.

Hardware required
All_in_one Starter Kit for Arduino x1
USB Cable x1

Hardware schematic

What will you see
You will observe that the temperature and humidity data from the sensors are updated on
the LCD screen at regular intervals. If the updates do not occur, please check whether
the firmware has been programmed correctly and whether the hardware connections are
functioning properly.

Complete Code

Main Code Explanation

/*******************DHT20*******************/
#include "DHT20.h"
DHT20 DHT(&Wire);

/*******************LCD*******************/
#include "Adafruit_LiquidCrystal.h"
Adafruit_LiquidCrystal lcd(1);
Before we start working with the sensors, we need to make some preliminary definitions
to simplify our subsequent operations with the sensors. We begin by including the
necessary libraries, and then we define variables for the DHT20 class and the LCD class.

Wire.begin();DHT.begin();lcd.begin(16, 2);
We utilize predefined variables to commence the initialization of the DHT20 temperature
and humidity sensor. Note that before initializing the DHT20 sensor, we must first ensure
that the `Wire.begin()` function initializes the I2C communication, otherwise the DHT20
sensor will not be able to initialize. Following this, we will proceed to initialize the LCD.

if (millis() - DHT.lastRead() >= 1000)
Due to the potential for unknown errors in the frequent and rapid collection of DHT20
data, we set an interval of 1 second and collect data using a non-blocking delay method.
Each time data is updated, we check if the last data update was within the last second.

Lesson 12 - Servo Control

Introduction
In this lesson, we will learn the basic use of a servo motor. We will rotate the servo from
0 degrees to 180 degrees, and then back from 180 degrees to 0 degrees.

Crowtail Starter All In One x1
servo x 1

Hardware required

Hardware schematic

lcd.setCursor(4, 0);lcd.print(String(DHT.getHumidity())+ " C");
lcd.setCursor(4, 1);lcd.print(String(DHT.getTemperature())+ " %");
When the time interval has elapsed, we can retrieve data from the DHT20 and display it
on the LCD. We can obtain the temperature and humidity by using `DHT.getHumidity()`
and `DHT.getTemperature()`, respectively.

What will you see
You will observe the servo motor rotating from 0 degrees to 180 degrees, and then from
180 degrees back to 0 degrees. If this process does not occur, please check to ensure
that the firmware has been correctly flashed and that the hardware connections are
error-free.

Complete Code

Complete Code
#include <Servo.h>
Servo myservo;
int pos = 0;
First, we import the library for operating the servo motor, and then we define the relevant
variables for the servo motor to facilitate subsequent operations on it.
myservo.attach(9);
The servo is initialized with pin 9 designated as the pin to which the servo is connected.
for (pos = 0; pos <= 180; pos += 1) {

 myservo.write(pos);
 delay(15);
 }
 for (pos = 180; pos >= 0; pos -= 1) {
myservo.write(pos);
 delay(15);
 }
Create two loops: The first loop rotates the servo motor from 0 degrees to 180 degrees,
incrementing by 1 degree each time;the second loop rotates the servo motor from 180
degrees back to 0 degrees, decrementing by 1 degree each time.

Hardware required

Hardware schematic

What will you see

Complete Code

Lesson 13 - IR Control LED

Introduction
In this section of the course, we will delve into some advanced applications of infrared
remote control technology. We can control the status of an LED using infrared remote
control by recognizing different button signals. When button 1 is pressed, the LED
remains on; when button 2 is pressed, the LED flashes; and when button 3 is pressed,
the LED turns off.

All_in_one Starter Kit for Arduino x1
USB Cable x1
Crowtail- IR Emitter x1

You will observe that when infrared remote control button 1 is pressed, the LED stays on
continuously; when button 2 is pressed, the LED flashes; and when button 3 is pressed,
the LED turns off. If this process does not occur, please check to ensure that the firmware
has been programmed correctly and that all hardware connections are functioning
properly.

Main Code Explanation
#include <TimerOne.h>
#include <IRSendRev.h>
Introduce a timer library named `TimerOne`, and incorporate an infrared remote control
library `IRSendRev.h`.

IR.Init(IR_PIN);
Timer1.attachInterrupt(toggleLED);
Timer1.stop();
Initialize the infrared remote control sensor, with `IR_PIN` being the pin connected to the
sensor.
Initialize Timer1 to control the blinking of the LED, and stop the timer in its initial state.

if (IR.IsDta())
Use an if statement to check whether the return value of the function IR.IsDta() is true; if
data is received, it returns true.

Upon receiving data, a switch statement is utilized to discern the type of data. If button 1
is pressed, the LED light will illuminate, and if the LED blinking timer is active, it will be
paused. If button 2 is pressed, it will check whether the LED blinking timer is inactive; if
so, it will be activated. If button 3 is pressed, the LED light will be turned off, and it will
determine whether the LED blinking timer should continue to run, pausing it if necessary.

switch (dta[8]) {
 case 48: Serial.println("[1]");
 digitalWrite(LedPin, HIGH);
 if (timerRunning) {
 stopTimer();
 }
 break;
 case 24: Serial.println("[2]");
 if (!timerRunning) {
 startTimer();
 }
 break;
 case 122: Serial.println("[3]");
 digitalWrite(LedPin, LOW);
 if (timerRunning) {
 stopTimer();
 }
 break;
}

void toggleLED() {
 ledState = !ledState;
 digitalWrite(LedPin, ledState);
}
void stopTimer() {
 Timer1.stop(); timerRunning = false;
}
void startTimer() {
 Timer1.start();
 timerRunning = true;
}

The function's purpose is to set the state of the LED and to update the `ledState` flag to
record the current status of the LED.
The `stopTimer()` function halts the timer and updates the status to `timerRunning`. The
`timerRunning` variable is used to track the state of the timer.
The `startTimer()` function initiates the timer and updates the status to `timerRunning`.
The `timerRunning` variable is used to track the state of the timer.

Lesson 14 - Weather Reminder
Introduction
In this section of the course, we will explore how to adjust the information displayed on
the LCD screen, the on/off state of the LED, and the alarm status of the buzzer based on
the temperature and humidity data detected by the DHT20 sensor.

All_in_one Starter Kit for Arduino x1
USB Cable x1

Hardware required

Hardware schematic

Buzzer

The LCD will display temperature and humidity information. If the temperature exceeds
25 degrees Celsius, a red light will illuminate, and the LCD will display a "High
Temperature" warning. If the temperature exceeds 30 degrees Celsius, the red light will
flash, and the LCD will display a "Hot Temperature" warning. When the humidity falls
below 40%, a buzzer will sound, and the LCD will display a "Dry Air" warning.

What will you see

Complete Code

if (millis() - DHT.lastRead() >= 1000)
The `millis()` function subtracts the last time the DHT20 data was read by the
`DHT.lastRead()` function from the current device's runtime to determine if a 1-second
interval has been reached.

String TemValue = "Tem:" + String(DHT.getTemperature()) + "C";
String HumValue = "Hum:" + String(DHT.getHumidity()) + "%";
Temperature data is obtained through the `DHT.getTemperature()` function, and humidity
data is acquired via the `DHT.getHumidity()` function. Subsequently, these values are
concatenated into strings and assigned to the variables `TemValue` and `HumValue`.
The temperature and humidity data are conveniently displayed on the LCD for easy
reading.

if (DHT.getTemperature() > 25 && DHT.getTemperature() <= 30)
{
 LCD_print("High temperature", " ");
 digitalWrite(LedPin, HIGH);
}
The temperature is checked to see if it lies within the range of 25 to 30 degrees Celsius.
If the temperature is above the upper limit, the LED light is turned on.

else if (DHT.getTemperature() > 30)
{
 LCD_print("Hot temperature", " ");
 LED_State = !LED_State ;

Main Code Explanation

#include "DHT20.h"
DHT20 DHT(&Wire);
#define BUZZER_PIN 3
#include "Adafruit_LiquidCrystal.h"
Adafruit_LiquidCrystal lcd(1);
To facilitate subsequent operations on these two types of sensors, we will import the
DHT20 library and the LCD library. To enhance the readability of the code, we have
defined a variable BUZZER_PIN to represent the buzzer's pin 3.
Wire.begin();
DHT.begin();
while (!lcd.begin(16, 2)) {
 Serial.println("Could not init backpack. Check wiring.");
 delay(50);
}
Initialize the DHT20 sensor and the LCD sensor. Please note that before the DHT20 can
be initialized, the I2C bus needs to be initialized.

The temperature is evaluated to determine if it exceeds 30 degrees Celsius. If it is higher,
the LCD displays 'Hot' to indicate the temperature, and the LED light is inverted to
achieve a blinking effect.

 digitalWrite(LedPin, LED_State);
}

Lesson 15 - Servo Angle Control
Introduction
In this lesson, we will explore how to use an infrared remote control to adjust the rotation
angle of a servo motor and display the angle in degrees on an LCD screen.

Hardware required
All_in_one Starter Kit for Arduino x1
USB Cable x1
servo x 1
Crowtail- IR Emitter x1

else
{
 LCD_print(TemValue, HumValue);
 digitalWrite(LedPin, LOW);
}

If the temperature does not fall into the aforementioned two scenarios, then the current
temperature and humidity will be displayed on the LCD, and the LED light will be turned
off.
if (DHT.getHumidity() < 40)
 {
 lcd.setCursor(0, 1);
 lcd.print("Dry air");
 tone(buzzerPin, 1300);
 }else
 {
 noTone(buzzerPin);
 }
The `DHT.getHumidity()` function is used to determine if the current humidity is below
40%. If it is, the LCD displays 'Dry Air' and the buzzer sounds; otherwise, the buzzer is
turned off.

Hardware schematic

What will you see
You will observe that the LCD displays the corresponding degrees after the angle is input
via the remote control. Upon pressing the confirm button, the servo motor rotates to the
specified angle, and the current angle is displayed on the LCD screen. When the stop
button is pressed, the servo motor ceases operation, and when the start button is
pressed, the servo motor begins to function.

Complete Code

Main Code Explanation
#include <IRSendRev.h>
#include <Servo.h>
#include "Adafruit_LiquidCrystal.h"
#define IR_PIN 2
Servo myservo;
Adafruit_LiquidCrystal lcd(1);
For ease of subsequent operations, we have defined two class variables to control the
servo and liquid crystal sensors, respectively, and have included the infrared remote
control library, servo library, and LCD library. The infrared sensor is connected to the
IR_PIN pin.

while (!lcd.begin(16, 2)) {
 Serial.println("Could not init backpack. Check wiring.");
 delay(50);
 }
IR.Init(IR_PIN);

Initialize the LCD and infrared remote control sensor.
if (IR.IsDta())
Check for the arrival of an infrared signal.

byte length = IR.Recv(dta); switch (dta[8])
If an infrared signal is received, save the information and then use a switch statement to
determine the type of infrared signal.

case 2: Represents pressing the NEXT button; if this button is pressed, the motor is
turned on.

case 2: Serial.println("[NEXT]");
 myservo.attach(9, 600, 2520);
 myservo.write(180);
 lcd.setCursor(0, 0);
 lcd.print(" ");
 lcd.setCursor(0, 0);
 lcd.print("Angle:180");
 break;
 case 194: Serial.println("[PLAY/PAUSE]");
 myservo.detach();
 break;
 case 144: Serial.println("[EQ]");
 if (num.toInt() >= 0 && num.toInt() <= 180)
 {
 Serial.println(num);
 num1 = "Angle:";
 myservo.write(num.toInt());
num = "";
 value = myservo.read();
 num1 += String(value);
 lcd.setCursor(0, 0);
 lcd.print(" ");
 lcd.setCursor(0, 0);
 lcd.print(num1);
 break;
 }
 else
 {
 num1 = "Angle:";
 num1 += "Error";
 num = "";
 lcd.setCursor(0, 0);
 lcd.print(" ");
 lcd.setCursor(0, 0);
 lcd.print(num1);
 break;
 }

case 194: Represents pressing the PLAY/PAUSE button; if this button is pressed, the
motor is turned off.
case 144: Represents pressing the EQ button; if this button is pressed, it indicates
confirmation to rotate to the specified angle; if the angle is invalid, an error is displayed
on the LCD.

The code segment indicates that when the numeric buttons 0-9 are pressed, the pressed
numbers are concatenated into a string to facilitate the transmission of rotation angles to
the motor.

case 104: Serial.println("[0]");
 num = num + '0';
 break;
 case 48: Serial.println("[1]");
 num = num + '1';
 break;
 case 24: Serial.println("[2]");
 num = num + '2';
 break;
 case 122: Serial.println("[3]");
 num = num + '3';
 break;
 case 16: Serial.println("[4]");
 num = num + '4';
 break;
 case 56: Serial.println("[5]");
 num = num + '5';
 break;
 case 90: Serial.println("[6]");
 num = num + '6';
 break;
 case 66: Serial.println("[7]");
 num = num + '7';
 break;
 case 74: Serial.println("[8]");
 num = num + '8';
 break;
 case 82: Serial.println("[9]");
 num = num + '9';
 break;

Lesson 16 - Polite Automatic Door

Introduction
In this lesson, we will learn about advanced operations of servo motors. We will control
the rotation of the servo motor using buttons to achieve the effect of opening the door
when the button is pressed and closing the door when the button is released.

Hardware required
All_in_one Starter Kit for Arduino x1
USB Cable x1
servo x 1

We will observe that when the Button button is pressed, the servo motor rotates 180
degrees to indicate that the gate is open, and when the button is released, the servo
motor rotates back 180 degrees to indicate that the gate is closed.

Hardware schematic

What will you see

Complete Code

Main Code Explanation

Firstly, the libraries servo.h and Adafruit_LiquidCrystal.h are included. Subsequently, a
variable named myservo is declared for the subsequent control of the servo motor.
Similarly, a variable named lcd is defined for operating the LCD display. Lastly, a variable
named buttonPin is established to detect the state of the button.
myservo.attach(9, 650, 2620);
To initialize and calibrate the servo motor, the first parameter specifies the pin to which
the motor is connected, the second parameter indicates the minimum pulse width, and
the third parameter denotes the maximum pulse width.
 while (!lcd.begin(16, 2)) {
 Serial.println("Could not init backpack. Check wiring.");
 delay(50);
 }
Initialize the LCD, which is a necessary operation for using the LCD display.

if (!digitalRead(buttonPin))
Use an `if` statement to determine whether the button has been pressed.
 {
 myservo.write(180);
 lcd.setCursor(0, 0);
 lcd.print(" ");
 lcd.setCursor(0, 0);
 lcd.print("Welcome");
 }

If the button is pressed, then rotate the motor by 180 degrees and display "Welcome" on
the LCD.
 else
 {
 myservo.write(0);
 lcd.setCursor(0, 0);
 lcd.print(" ");

 }
If The Button Is Not Pressed, The Motor Should Rotate To 0 Degrees And The LCD
Should Be Cleared.

#include <Servo.h>
Servo myservo;
int buttonPin = 7;
/*******************LCD*******************/
#include "Adafruit_LiquidCrystal.h"
Adafruit_LiquidCrystal lcd(1);

Lesson 17 - PIR Control Light

Introduction
In this lesson, we will delve into advanced operations with PIR motion sensors. We will
learn how to control the illumination of an LED based on the detection from the PIR
motion sensor.

Hardware required
All_in_one Starter Kit for Arduino x1
USB Cable x1

You will observe that when you wave or walk within the range of the PIR motion sensor,
the LED will light up for 5 seconds. If there is no movement detected within the sensing
 range of the PIR motion sensor, the LED will not illuminate. If this process does not
change as described, please check to ensure that the program has been successfully
uploaded to the device.

Hardware schematic

What will you see

Complete Code

Main Code Explanation
#define PIR_PIN A2
static int oldState = 0;
int LedPin = 10;
Before we begin using the sensor, it is necessary to define some variables that will
facilitate our subsequent operations. We will use a macro definition to assign PIR_PIN to
represent pin A2, which makes it more understandable. We also define a variable named
oldState to record the state of the PIR sensor before any change. Additionally, we define
a variable LedPin and assign it pin number 10.

pinMode(PIR_PIN, INPUT);
pinMode(LedPin, OUTPUT);
Initialize the PIR sensor and the LED pin. Set the PIR_PIN to input mode. Assign the
LedPin to output mode. The assigned modes are related to their subsequent use.

byte state = digitalRead(PIR_PIN);
 if(state && oldState != state) {
 Serial.println("[-] Motion detected!");
 oldState = state;
 digitalWrite(LedPin, HIGH);
 delay(5000);
 } else if(!state && oldState != state) {
 Serial.println("[-] No Motion!");
 digitalWrite(LedPin, LOW);
 oldState = state;
 }
Define a variable `state` to read the level of the PIR sensor. If the current level is high
and the previous state was not high, then record the current state to `oldState`, turn on
the LED light, and delay for 5 seconds. If the current level is low and the previous state
was not equal to the current level, then turn off the LED light and record the current state
of the PIR sensor.

Lesson 18 - Sound Reminder

Introduction
In this lesson, we will explore advanced operations with a sound sensor. We will use the
sound sensor to detect the ambient noise level. When the sensor detects sound, it will

trigger a buzzer to provide an audible alert.

All_in_one Starter Kit for Arduino x1
USB Cable x1

Hardware required

Hardware schematic

What will you see

Complete Code

You will observe that if the surrounding noise is too loud or you shout at the sound
sensor, the buzzer will emit a one-second beep to remind you to lower the volume. If the
noise remains high, the buzzer will continue to emit beeps. If there is no sound, the
buzzer will cease to produce beeps.

Buzzer

Initialize the mode of the sound sensor and buzzer pins. Configure the `SOUND_PIN`
pin as an input mode, which outputs a high level when sound is detected. Assign the
`buzzerPin` pin as an output mode for controlling the buzzer.

if (analogRead(SOUND_PIN)>=400) {
 Serial.println("[-] Detect Sound!");
 tone(buzzerPin, 1300);
 delay(1000);

while (1)
 {
 if (analogRead(SOUND_PIN)>=400)
 {
 // tone(buzzerPin, 1300);
 Serial.println(analogRead(SOUND_PIN));
 }
 else
 {
 noTone(buzzerPin);
 break;
 }
 }

}
When the `analogRead` function detects that the analog value output by the
`SOUND_PIN` pin exceeds 400, use the `tone` function to sound the buzzer.
Continuously monitor whether the analog value of the `SOUND_PIN` pin falls below 400;
if the output analog value is below 400, it indicates that the detected sound level has not
reached the threshold, and the buzzer should be turned off and the loop should exit. If
the sound level is consistently above 400, the buzzer should continue to sound.

Main Code Explanation

#define SOUND_PIN A1
int buzzerPin = 3;

Define a macro named `SOUND_PIN` to represent pin A1 for better understanding.
Assign pin number 3 to the variable `buzzerPin` for the buzzer.

pinMode(SOUND_PIN, INPUT);
pinMode(buzzerPin, OUTPUT);

Lesson 19 - Calculation of Acceleration
Introduction
In this lesson, we will learn how to operate the MPU6050 sensor. By moving the board,
the MPU6050 sensor will detect and calculate different accelerations in various directions.

All_in_one Starter Kit for Arduino x1
USB Cable x1

Hardware required

Hardware schematic

What will you see

Complete Code

When you run the program, you will see the LCD display the accelerometer values for
the X, Y, and Z axes. As you quickly move the accelerometer along the axis, you will
observe the accelerometer values for that axis change accordingly.

Main Code Explanation
#include <Wire.h>
#include "MPU6050.h"
/*******************LCD*******************/

#include "Adafruit_LiquidCrystal.h"
Adafruit_LiquidCrystal lcd(1);
Introduce the relevant libraries: `MPU6050.h` is used for operating the MPU6050 sensor,
and `Adafruit_LiquidCrystal.h` is used for operating the LCD. Both communicate via I2C,
so you also need to include `Wire.h`.

Wire.begin();
MPU_START();
GYRO_CONFIG_SET(0);
ACCEL_CONFIG_SET(0);
while (!lcd.begin(16, 2)) {
 Serial.println("Could not init backpack. Check wiring.");
 delay(50);
}
After initializing the I2C interface with Wire.begin(), proceed to initialize the MPU6050,
followed by activating it with MPU_START(). Then, configure the device's gyroscope
sensitivity using GYRO_CONFIG_SET(0), and set the accelerometer sensitivity with
ACCEL_CONFIG_SET(0). Finally, complete the initialization of the LCD.
Get_Value();
lcd.setCursor(3, 0);
lcd.print(val_seven[0]);
lcd.setCursor(11, 0);
lcd.print(val_seven[1]);
lcd.setCursor(3, 1);
lcd.print(val_seven[2]);
The acceleration values are obtained through Get_Value() and are ensured to be stored
in the global array variable val_seven. Subsequently, the cursor position is set using lcd.
setCursor, and the corresponding values are displayed with lcd.print. The displayed ax
represents the acceleration along the x-axis, ay represents the acceleration along the
y-axis, and az represents the acceleration along the z-axis.

Lesson 20 - Smart Corridor Light
Introduction
In this lesson, we will learn about the advanced operations of linking the Sound Sensor,
PIR, Light Sensor, and LED sensors. By coordinating between the sensors, we will
achieve the effect of a smart corridor light.

All_in_one Starter Kit for Arduino x1
USB Cable x1

Hardware required

Hardware schematic

What will you see

When the ambient light is very strong, the LED will not light up regardless of movement

or sound. When the ambient light is dim or the light sensor is blocked by hand, the LED
is set to be off by default. At this point, if there is movement or sound, the LED will light
up for 10 seconds and then turn off. If there is continuous movement or continuous
sound, the LED will remain on until there is no activity, after which it will stay on for
another 10 seconds before turning off.

Complete Code

Main Code Explanation
#include <BH1750.h>
#include <Wire.h>
BH1750 lightMeter(0x5c);
#define PIR_PIN A2

int LedPin = 10;
#define SOUND_PIN A1
Before commencing the utilization of sensors, it is imperative to include the relevant
library files. Initially, to employ the light sensor, we must incorporate the BH1750.h library.
Given that this photosensitive sensor communicates via the I2C protocol, it is also
necessary to include the Wire.h library. Once the library files are incorporated, we can
proceed to define variables that will facilitate subsequent sensor operations. Specifically,
we need to declare a variable named `lightMeter` and assign it the address `0x5c`.
Furthermore, we utilize a macro definition `PIR_PIN` to denote pin A2, and we define a
variable named `LedPin`, assigning it to pin 10. Similarly, we employ a macro definition
`SOUND_PIN` to represent pin A1.

Wire.begin();
if (lightMeter.begin(BH1750::CONTINUOUS_HIGH_RES_MODE, 0x5c, &Wire)) {
 Serial.println(F("BH1750 Advanced begin"));
} else {
 Serial.println(F("Error initialising BH1750"));
}
pinMode(PIR_PIN, INPUT);
pinMode(LedPin, OUTPUT);
pinMode(SOUND_PIN, INPUT);

After initializing the I2C with Wire.begin(), you can then initialize the light sensor with:
lightMeter.begin(BH1750::CONTINUOUS_HIGH_RES_MODE, 0x5c, &Wire)

When initializing the modes for various pins, where INPUT represents input mode and
OUTPUT represents output mode.

int lux = lightMeter.readLightLevel();
Store the acquired brightness data in a variable named `lux` for subsequent processing.

if (lux < 100)
When the brightness data is less than 100, it indicates that the natural light is very dim,
necessitating the activation of the PIR and Sound sensors to determine if there is any
movement or sound indicative of a person passing by.
int state = digitalRead(PIR_PIN);

if (lightMeter.measurementReady(true))
Use an if statement to determine whether data can be obtained from the light sensor.

Lesson 21 - Simple Calculator
Introduction
In this lesson, we will explore advanced methods of using IR remote controls. We will
learn how to input numerical values and expressions via an IR remote control and display
them on the screen. After pressing the confirmation button, the system will calculate the
result and display it on the screen.

Hardware required
All_in_one Starter Kit for Arduino x1
USB Cable x1
Crowtail-IR Emitter x1

Hardware schematic

if (state == HIGH || digitalRead(SOUND_PIN))
{
digitalWrite(LedPin, HIGH);
delay(10000);
}

Read the PIR sensor level and the sound sensor level; when there is movement or sound
detected, the LED light will turn on and a delay of 10 seconds will be implemented.

else if(state == LOW && digitalRead(SOUND_PIN)==LOW){
 Serial.println("[-] No Motion!");

 digitalWrite(LedPin, LOW);
 }

When the PIR sensor and Sound sensor both read a low level, turn off the LED.
lux = lightMeter.readLightLevel();
if (lux >= 100)
break;
When reading brightness data, if the brightness is greater than or equal to 100, it
indicates that the natural light is already bright enough. In this case, the loop will be
exited, and no further detection will be performed using the PIR sensor and Sound
sensor.

What will you see
An IR remote control serves as the input device, while an LCD acts as the calculator
display. Five non-numeric buttons on the remote control are designated as: "＋, -". Upon
running the program, the LCD displays "Please enter:", prompting the user to input
numerical values, which are then synchronized and displayed on the LCD in real-time.
After inputting the values, pressing the equals sign causes the LCD to display the result.
If the calculation exceeds the range, the LCD shows "Out of calculation range"; if the
input format is incorrect, it displays "Error".

Complete Code

Main Code Explanation
#include <IRSendRev.h>
//#include <IRSendRevInt.h>
#define IR_PIN 2
/*******************LCD*******************/
#include "Adafruit_LiquidCrystal.h"
Adafruit_LiquidCrystal lcd(1);
Before utilizing the LCD and IR sensor, we must first include the IRSendRev.h and
Adafruit_LiquidCrystal.h libraries. To enhance code readability, we use a macro definition
IR_PIN to represent pin 2. We define the lcd variable for subsequent operations on the
LCD.

IR.Init(IR_PIN);
 Serial.println("init over");
 while (!lcd.begin(16, 2)) {
 Serial.println("Could not init backpack. Check wiring.");
 delay(50);
 }
Initialization IR and LCD
 byte dta[10];
 if (IR.IsDta())

Define an array `dta` for storing received data. Use an if statement to check if there is
any infrared data to be received; if there is data, the function `IR.IsDta()` will return true.

byte length = IR.Recv(dta);
 Serial.print("- press -\t");
switch (dta[8])

Utilize the `IR.Recv(dta)` function to read data sent by the IR transmitter, and then
employ a switch statement to determine the type of data received.

ase 224: Serial.println("[VOL-]");
 num += '-';
 break;
 case 168: Serial.println("[VOL+]");
 num += '+';
 break;
case 104: Serial.println("[0]");
 num += '0';
 break;
case 48: Serial.println("[1]");
 num += '1';
break;

case 24: Serial.println("[2]");
 num += '2';
 break;
case 122: Serial.println("[3]");
 num += '3';
 break;
case 16: Serial.println("[4]");
 num += '4';
 break;
case 56: Serial.println("[5]");
 num += '5';
 break;
case 90: Serial.println("[6]");
 num += '6';
 break;
case 66: Serial.println("[7]");
 num += '7';
 break;
case 74: Serial.println("[8]");
 num += '8';
 break;
case 82: Serial.println("[9]");
 num += '9';
 break;

The selection statement above is used to identify the data received from the IR
transmission. Once the keys 0-9 and the symbols '+“and”-' are recognized, these
characters are appended to the `num` variable for subsequent calculations.

case 144: Serial.println("[EQ]");
 num += '=';
 num3 = "Equal to:";
 if (sliceString(num, num1, num2))
 {
 Serial.println("Legal data");
 if (num1.toInt() > 100 || num2.toInt() > 100 || num1.toInt() < 0 || num2.toInt() < 0)
 {
 Serial.println("Illegal data");

num = "";
 num3 = "Out of range";
 lcd.setCursor(0, 0);
 lcd.print(" ");
 lcd.setCursor(0, 0);
 lcd.print(num3);
 break;
 }
 if (flag1)
 {
 value = performOperation(num1.toInt(), num2.toInt(), '+');
 Serial.println("+data");
 } else
 {
 value = performOperation(num1.toInt(), num2.toInt(), '-');
 Serial.println("-data");
 }
 num = "";
 num3 += String(value);
 lcd.setCursor(0, 0);
 lcd.print(" ");
 lcd.setCursor(0, 0);
 lcd.print(num3);
 } else
 {
 num = "";
 num3 += "Error";
 lcd.setCursor(0, 0);
 lcd.print(" ");
 lcd.setCursor(0, 0);
 lcd.print(num3);

 }
 Serial.println("value:");
 Serial.println(value);
 Serial.println();
 Serial.println(num);

 break;

Upon pressing the EQ button, defined as ‘=’, it signifies the completion of equation input
and initiates the calculation process. Initially, the custom function sliceString is employed
to segment the string. Subsequently, the legality of the numerical values is assessed
through the statement if (num1.toInt() > 100 || num2.toInt() > 100 || num1.toInt() < 0 ||
num2.toInt() < 0). Should the input expression be valid, an if (flag1) check is then
conducted to determine whether the operation used within the expression is addition ‘+’
or subtraction ‘-’. Finally, the custom function performOperation is utilized to compute the
result, which is stored in the variable value. After the calculation, the cursor position is
set using lcd.setCursor(0, 0), and the calculated result is displayed by lcd.print(num3). In
the event that the input expression is invalid, an “Error” message is displayed on the LCD.

MAKE YOUR MAKING EASIER

