LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions ~ CR2024-MI3270

E32R35T&E32N35T
3.5inch ESP32-32E

Demo Instructions

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

CONTENTS

1. Software and hardware platform description ..., 3
2. Pin allocation iNStrUCLIONS ... 3
3. Instructions for using the example programccoorvennene. 5
3.1. Set up ESP32 Arduino development environmentcccccceeeeecennnen. 5
3.2. Install third-party software lIbraries ... 5
3.3. Example Program Usage INStrUCtioNSccccoevvveveveeeeveeereeeeeeeeeee 12

www.lcdwiki.com 2/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-M13270

1. Software and hardware platform description

Module: 3.5-inch ESP32-32E display module with 320x480 resolution and ST7796
screen driver IC.
Module master: ESP32-WROOM-32E module, the highest main frequency 240MHz,
support 2.4G WIFI+ Bluetooth.
Arduino IED versions: versions 1.8.19 and 2.3.2.

ESP32 Ardunio core library software versions: 2.0.17 and 3.0.3.

2. Pin allocation instructions

v o

=]
anan

|

LLL
i
["iPTS

S
0 23

=
|
I
[T}
so 8
=
(SIDT1Z01 I_
A38>8101
COSIWOBTI0I
C(ISOW)BZ?EI ‘L
¢13S)>S201
¢¥as>Ze0r
ng'e
[T} ‘I_
N

TR ELH:,HJ“

[

=
N5
.

LLULEEL L

= ma
Ll ol] [n—n

‘—'""""

3.5" LCD Display
ESP32-32E 320x480

Resistance Touch

Figure 2.1 Rear view of 3.5-inch ESP32-32E display module

The main controller of the 3.5-inch ESP32 display module is ESP32-32E, and the

GPIO allocation for its onboard peripherals is shown in the table below:

ESP32-32E pin allocation instructions

T—
On board On board ESP32-32E

. . . description
device pins connection pin

LCD screen chip selection control signal,

FT_CS 1015 .
low level effective

LCD screen command/data selection
TFT_RS 102 control signal.High level: data, low level:
command

www.lcdwiki.com 3/29

LCDWIKI

E32R35T&E32N35T ESP32-32E Demo Instructions

CR2024-MI3270

SPI bus clock signal (shared by LCD

TFT_SCK 1014
- screen and touch screen)
SPI bus writes data signals (shared by LCD
TFT_MOSI 1013
- screen and touch screen)
SPI bus reading data signal (shared by
TFT_MISO 1012
LCD screen and touch screen)
LCD screen reset control signal, low level
TFT_RST EN reset (shared reset pin with ESP32-32E
main control)
LCD screen backlight control signal (high
TFT_BL 1027 level lights up the backlight, low level turns
off the backlight)
SPI bus clock signal (shared by touch
TP_SCK 1014
screen and LCD screen)
SPI bus writes data signals (shared by
TP_DIN 1013
touch screen and LCD screen)
SPI bus reading data signal (shared by
TP_DOUT 1012
RTP touch screen and LCD screen)
Resistance touch screen chip selection
TP_CS 1033 . .
control signal, low level effective
Resistive touch screen touch interrupt
TP_IRQ 1036 signal, when a touch is generated, input a
low level to the main control
LED_RED 1022 Red LED light RGB tri color LED light,
LED LED_GREEN 1016 Green LED light | ith @ common anode,
lit at low level and
LED_BLUE 1017 Blue LED light | turned off at high level.
SD_CS 105 SD card signal selection, low level effective
SD_MOSI 1023 SD card SPI bus write data signal
SDCARD
SD_SCK 1018 SD card SPI bus clock signal
SD_MISO 1019 SD card SPI bus read data signal
Battery voltage ADC value acquisition
BATTERY BAT_ADC 1034 i ,
signal (input)
. Audio enable signal, low-level enable,
Audio_ENABLE 104 . .
Audio high-level disable
Audio_DAC 1026 Audio signal DAC output signal
Download mode selection button (press
KEY BOOT_KEY 100

and hold the button to power on, then

www.lcdwiki.com

4/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-M13270
release it to enter download mode)
ESP32-23E reset button, low level reset
RESET_KEY EN .
(shared with LCD screen reset)
RX0 RXDO ESP32-32E serial port receiving signal
Serial Port
TXO0 TXDO ESP32-32E serial port sends signal
Type-C power interface, connected to 5V
POWER |TYPE-C_POWER /

voltage.

Table 2.1 Pin allocation instructions for ESP32-32E onboard peripherals

3. Instructions for using the example program

3.1. Set up ESP32 Arduino development environment

For detailed instructions on setting up the ESP32 Arduino development

environment, please refer to the documentation in the package titled "

Arduino_IDE1_development_environment_construction_for_ESP32" and "

Arduino_IDE2_development_environment_construction_for_ESP32".

3.2. Install third-party software libraries

After setting up the development environment, the first step is to install the

third-party software libraries used by the sample program. The steps are as follows:

A. Open the "1-RHIBAF_Demo \Arduino\install libraries" directory in the

package and find the third-party software library, as shown in the following

figure:

www.lcdwiki.com

5/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-M13270
=
CHE) [1598 Demo » Arcuino » nstallbrares » | <y || 2z nsiol lrares P

e v

EF) |EE) EE(V) IE(F|EIH)

BEFIEF ~ H=~ Frid=E

BIR fERHE

ArduinoJson 7/20/2024 5:30 ...
ESP32-audiol2S 7/20/2024 5:24 ...
ESP32Time 7/20/2024 5:21 ...
HttpClient 7/20/2024 5:31 ...
vgl 7/20/2024 5:16 ...
NTPClient 7/20/2024 5:32 ...
TFT_eSPI 7/20/2024 5:16 ...
Time 7/20/2024 5:30 ...
Tlpg_Decoder 772072024 5:20 ...
XT_DAC_Audio 7/22/2024 3:29 ...

10 IR

Figure 3.1 Example Program Third Party Software Library

ArduinoJson: C++JSON software library for Arduino and the Internet of
Things.

ESP32-audiol2S: ESP32's audio decoding software library uses ESP32's 12S
bus to play audio files in formats such as mp3, m4a, and mav
from SD cards through external audio devices.

ESP32Time: Arduino software library for setting and retrieving internal RTC

time on ESP32 board

HttpClient: An HTTP client software library that interacts with Arduino's web

server.

Lvgl: A highly customizable, low resource consuming, aesthetically pleasing,

and easy-to-use embedded system graphics software library.

NTPClient: Connect NTP client software library to NTP server.

TFT_eSPI: The Arduino graphics library for TFT-LCD LCD screens supports

multiple platforms and LCD driver ICs.

Time: A software library that provides timing functionality for Arduino.

TJpg_Decoder: The Arduino platform JPG format image decoding library can

decode JPG files from SD cards or Flash and display them on LCD.

XT_DAC_Audio: The ESP32 XTronic DAC audio software library supports

www.lcdwiki.com 6/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

WAV format audio files.

B. Copy these software libraries to the library directory of the project folder. The
library directory of the project folder defaults to
"C:\Users\Administrator\Documents\Arduino\libraries" (the red part
represents the actual username of the computer). If the project folder path is
modified, it needs to be copied to the modified project folder library directory.

C. After the installation of the third-party software library is completed, you can

open the sample program for use.

The Ivgl and TFT_eSPI software libraries need to be configured before use in
third-party software libraries. The software libraries in the package have already
been configured and can be used directly. If you don't want to use the already
configured library, you can download the latest version of the library from GitHub
and configure it again. The steps are as follows:

A. Find the download link on GitHub and download it. The download link is as

follows:

Ivgl: https://github.com/Ivgl/Ivgl/tree/release/v8.3(Only V8. x version

can be used, V9. x version cannot be used)

TFT_eSPI: https://github.com/Bodmer/TFT eSPI

Please find attached the download links for other software packages that do
not require configuration:

ArduinoJson: https://github.com/bblanchon/ArduinoJson.git

ESP32Time: https://github.com/fbiego/ESP32Time

HttpClient: http://github.com/amcewen/HttpClient

NTPClient: https://github.com/arduino-libraries/NTPClient.git

Time: https://github.com/PaulStoffregen/Time

TJpg_Decoder: https://github.com/Bodmer/TJpg Decoder

B. After the library download is complete, unzip it (for ease of distinction, the
decompressed library folder can be renamed), and then copy it to the project

folder library directory (default is

www.lcdwiki.com 7/29

https://github.com/lvgl/lvgl/tree/release/v8.3
https://github.com/Bodmer/TFT_eSPI
https://github.com/bblanchon/ArduinoJson.git
https://github.com/fbiego/ESP32Time
http://github.com/amcewen/HttpClient
https://github.com/arduino-libraries/NTPClient.git
https://github.com/PaulStoffregen/Time
https://github.com/Bodmer/TJpg_Decoder

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-M13270

"C:\Users\Administrator\Documents\Arduino \ libraries" (the red part is the
actual user name of the computer). Next, perform library configuration by
opening the "1-;~:#1#2F_Demo \Arduino\Replaced files" directory in the

package and finding the replacement file, as shown in the following figure:

e
KI5 | | L7 Demo » Arduino » Replacedfles | <[4 | 5 eplacediles P
X{{!F(F] FEE) Z&(V) I8 FEH)

IR - aEFES - HE ~ gtk

<+ zw) R

Iv_conf.h

ST7796_Init.h

4/4/2023 9:34 AM
6/25/2024 4:01 ...
6/25/2024 3:56 ...

User_Setup.h

I

Figure 3.2 Third party software library replacement file
C. Configure LVGL library:

Copy the Iv_conf. h file from the Replaced files directory to the top-level

directory of the Ivgl library in the project library directory, as shown in the

following figure:

r o= o

KIS | = 0 » Arduino » brares » gl v < ir | £ g £
el Bl e e e
P SEE ZEV) TET) 2EH)

S ~ &) FTF - HZE ~ BFEMG g = - [l @

X -

% SHLREE

HPIaT: o -
s vgl
| =R -
= Kconfig
library.json
~ 1] library.properties
é | LICENCE.txt E
| | lv_conf.h H
L
]

| lv_conf_template.h

Figure 3.3 Configuring LVGL Library 1

Open the Iv_conf_internal. h file in the src directory of the Ivgl library under

the engineering library directory, as shown in the following figure:

www.lcdwiki.com 8/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-M13270

MR \EE =5((\V) IEM #EEH)
R - o) #7TFF - HE ~ BTk EEEsdek

SR

5rC

| core
| lvgl.h

Iv_conf_kconfig.h

| | lv_conf_internal.h

Iv_api_map.h
| 1 |

o
§_

Iv_conf internal.h {&pzEE8: 2023/4/4 9:35
H =zi% Fuh: 73.7 KB

Figure 3.4 Configuring LVGL Library 2

After opening the file, modify the contents of line 41 as shown below (by ".. /..

/lv_conf.h Change the value to.. /lv_conf.h "), and save the modification.

/*If 1v_conf.h is not skipped include it*/
#ifndef LV_CONF_SKIP
#ifdef LV_CONF_PATH /*If there is a path defined for lv_conf.h
#define _ LV _TO_STR_AUX(x) #x
#define _ LV_TO STR(x) _ LV _TO STR_AUX(x)
#include LV TO STR(LV_CONF_PATH)
#undef _ LV _TO_STR_AUX
#undef _ LV TO STR

#elif defined(LV_CONF_INCLUDE_SIMPLE) /*or simply include lv_conf.h is enabled®/
#include "lv_conf.h”

#else

| #include-"../1lv_conf.h" /*Else assume lv_conf.h is next to the lvgl fo

#endit

#if ldefined(LV_CONF_H) & !defined(LV_CONF_SUPPRESS DEFINE_CHECK)
/* #include will sometimes silently fail when has include is used */
/* https://gcc.gnu.org/bugzilla/show _bug.cgi?id=80753 */
#pragma message("Possible failure to include lv_conf.h, please read the comment in th
#endif
#endif

Figure 3.5 Configuring LVGL library 3

Copy examples and demos from Ivgl in the project library to src in lvgl, as

shown below:

www.lcdwiki.com 9/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-M13270

=R X

IR) > o= » ki » Arduino b lbraries » gl » - [b | #2149l £
MHF) FE(E) E5((NV) LTE(T) #FEIH)
Hif ~ HE ~ FrEsftsk =~ 1 @ I

T XHE

HPIG=: ofisE ~
Ivgl

B i

L src

[T
L]

| scripts

| env_support

| docs

__demos -

o= = @B L

v o« 1 3

i

27 TR

Figure 3.6 Configuring LVGL Library 4

Copy directory status:

i | [) 8

-
\(:__& l.. « 3% » Arduino » libraries » Ivgl » src » H

SCEE(F) B3R =EE(\V) LTE(T) FEEIH)
B~ H= ~ gt =~ 1 @ I
) SAYEE HEBIA i -
=] src .
o =
 extra
B
l | | examples |
u | draw H
=)
2 . core
| lvgl.h 0
_ I 1 3
'] 13 MR
)

Figure 3.7 Configuring LVGL Library 5

D. Configure TFT_eSPI library:

Firstly, rename the User_Setup. h file in the top-level directory of the

_.1

www.lcdwiki.com 10/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-M13270

TFT_eSPI library under the project folder library directory to User_Setup_bak. h.
Then, copy the User_Setup. h file from the Replaced files directory to the

top-level directory of the TFT_eSPI library under the project library directory, as

shown in the following figure:

|)« Arduino » tiraries » T ey <4y
() SRiE(E) =H(V) 1TE(T) #FEIH) sl
[R~ &) 79 H=E~ EE B4 S =~ O @

v DTRYEE
| TFT_eser

B o= . =

HEFIg=: sofse -

| TFT_config.h
=] | TFT_eSPLcpp
o | TFT_eSPLh
E ‘ | User_Setup.h
L
|

‘ | User_Setup_bak.h

|

| User_Setup_Select.h

Figure 3.8 Configuring TFT_eSPI Library 1

Next, rename ST7796_ Init. h in the TFT_eSPI library TFT_Drivers
directory under the project folder directory to ST7796_ Init. bak. h, and then copy
ST7796_ Init. h in the Replaced files directory to the TFD_eSPI library TFT_Drivers

directory under the project folder library directory, as shown in the following figure:

XH(F) ZWEE(E) =J(V) TR #EH)

SR~ G 2=~ BT P =~ 1 @ |

h I*EL'E HEPISS: ik -
TFT_Drivers

= » g
JE| =%

= | ST7789_Inith

1| | ST7789_Rotation.h
) | §T7796_Defines.h

= | | ST7796_Init.h

3 | | ST7796_Init_bak.h =
iy | ST7796_Rotation.h =

Figure 3.9 Configuring TFT_eSPI Library 2

www.lcdwiki.com 11/29

LCDWIKI

E32R35T&E32N35T ESP32-32E Demo Instructions

CR2024-M13270

3.3. Example Program Usage Instructions

The example program is located in the "1-7~##2F_Demo \Arduino\demos"

directory of the package, as shown in the following figure:

E—— L [—

MR R|E(E) ZEE((V) IE(T) #mEH)

A - B33EF - H=E -

it

G5 ()). « L7 Demo » Arduino » demos » -1 | R demos P

-

L=t

2

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
[
)
)
)
)
)
)

01_Simple_test
02_colligate_test
03_display_graphics
04_display_scroll
05_show_SD_jpg_picture
06_RGB_LED V2.0
06_RGB_LED V3.0
07_Flash_DMA_jpg
08_key_test
09_key_interrupt
10_uart

11_RTC_test
12_timer_test_V2.0
12_timer_test_V3.0
13_Get_Battery Voltage
14_Backlight_PWM_V2.0
14_Backlight_PWM_V3.0
15_Audio_play_V2.0
16_Audio_WAV_V2.0

17_Buzzer_PiratesOfTheCaribian

18_WiFi_scan

19_WiFi_AP
20_WiFi_SmartConfig
21_WIiFi_STA
22_WIiFi_STA_TCP_Client
23_WIiFi_STA_TCP_Server
24_WIiFi_STA_UDP

25_BLE scan V2.0

25_BLE scan_ V3.0

26_BLE server V2.0
26_BLE_server_V3.0
27_Desktop_Display
28_display_phonecall

29 _touch_pen
30_RGB_LED_TQUCH_V2.0
30_RGB_LED_TQUCH_V3.0
31_LVGL_Demos
32_WiFi_webserver

Touch_calibrate

e B3

7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/20/2024 4:54 ...
7/23/2024 3:42 ...
7/19/2024 4.22 ...
7/19/2024 422 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
771912024 4:22 ...
7/19/2024 4:22 ...
7/23/2024 4:00 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/23/2024 4:04 ...
7/19/2024 4:22 ...
7/22/2024 3:31 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/19/2024 422 ...
7/23/2024 4:45 ...
7/19/2024 422 ...
7/23/2024 4:48 ...
7/19/2024 422 ...
7/19/2024 422 ...
7/19/2024 4:22 ...
7/20/2024 5:09 ...
7/23f2024 5:13 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...
7/19/2024 4:22 ...

— Y Y Y Y L.

Figure 3.10 Example Program

www.lcdwiki.com

12/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

The introduction of each example program is as follows:
01_Simple_test
This example is a basic example program that does not rely on any
third-party libraries. The hardware requires an LCD display screen, which
displays full screen color filling and random rectangle filling. This example can be
directly used to check if the display screen is functioning properly.
02_colligate_test
This example relies on the TFT_eSPI software library, and the hardware
requires an LCD display screen. The displayed content includes drawing points,
lines, various graphic displays, and running time statistics, making it a
comprehensive display example.
03_display_graphics
This example relies on the TFT_eSPI software library, and the hardware
requires an LCD display screen. The display content includes various graphic
drawings and fillings.
04 _display_scroll
This example requires the TFT_eSPI software library, and the hardware
needs to be an LCD display screen. The display content includes Chinese
characters and images, scrolling text display, reversed color display, and rotation
display in four directions.
05 show_SD jpg_picture
This example requires reliance on TFT_eSPI and TJpg_Secoder software
libraries, and hardware requires an LCD display screen and MicroSD card. This
example function is to read JPG images from a MicroSD card, parse them, and
then display the images on the LCD. The example usage steps are:
A. Copy the JPG images from the "PIC_320x480" directory in the sample
folder to the root directory of the MicroSD card through the computer.
B. Insert the MicroSD card into the SD card slot of the display module;

C. Power on the display module, compile and download the sample

www.lcdwiki.com 13/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

program, and you will see pictures displayed alternately on the LCD screen.
06_RGB_LED V2.0
This example does not rely on any third-party software libraries and can only
use the Arduino-ESP32 core software library version 2.0 (such as version 2.0.17).
The hardware requires RGB tri-color lights. This example shows the RGB
three-color light on and off control, flicker control, and PWM brightness control.
06_RGB_LED_V3.0
This example does not rely on any third-party software libraries and can only
use Arduino-ESP32's 3.0 core software library (e.g. 3.0.3). The required
hardware and functions are the same as those shown in the example
06_RGB_LED_V?2.0.
07_Flash_DMA jpg
This example relies on the TFT_eSPI and TJpg_Decoder software libraries.
The hardware requires an LCD display. This example shows reading JPG
images from the Flash inside the ESP32 module and parsing the data, and then
displaying the picture on the LCD. Example usage steps:
A. Take the jpg image that needs to be displayed through the online mold tool.
Online mold tool website:

http://tomeko.net/online tools/file to hex.php?lang=en

B. after the success of the module, copy the data to the array of the "image.h"
file in the sample folder (the array can be renamed, and the sample program
should also be modified synchronously)

C. Power on the display module, compile and download the example program,
you can see the picture display on the LCD screen.

08 key test
This example does not rely on any third-party software libraries. The
hardware requires the use of the BOOT button and RGB three-color lights. This
example shows the detection of key events in polling mode, while operating the

key to control the RGB three-color light.

www.lcdwiki.com 14 /29

http://tomeko.net/online_tools/file_to_hex.php?lang=en

LCDWIKI

E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

09 _key_interrupt

This example does not rely on any third-party software libraries. The
hardware requires the use of the BOOT button and RGB three-color lights. This
example shows an interrupt mode to detect key events, while operating the key

to control the RGB three-color light on and off.

10 _uart

This example relies on the TFT_eSPI software library, and the hardware
requires a serial port and an LCD display. This example shows how the ESP32
interacts with the PC through a serial port. The ESP32 sends information to the
computer through the serial port, and the computer sends information to the
ESP32 through the serial port. After receiving the information, the ESP32

displays it on the LCD screen.

11_RTC_test

This example relies on the TFT_eSPI and ESP32Time software libraries,
and the hardware requires an LCD display. This example shows using the
ESP32's RTC module to set the real-time time and date and display the time and

date on the LCD display.

12 _timer_test V2.0

This example does not rely on any third-party software libraries and can only
use the Arduino-ESP32 core software library version 2.0 (such as version 2.0.17).
The hardware requires RGB tri-color lights. This example shows the use of the
ESP32 timer, by setting a timing time of 1 second to control the green LED light

off (every 1 second on, every 1 second off, and always cycling).

12 _timer_test V3.0

This example does not rely on any third-party software libraries and can only
use Arduino-ESP32's 3.0 core software library (e.g. 3.0.3). The hardware
requires RGB tri-color lights. This example demonstrates the same functionality

as the 12_timer_test V2.0 example.

www.lcdwiki.com 15/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

13_Get_Battery Voltage
This example relies on the TFT_eSPI software library. The hardware
requires an LCD display and a 3.7V lithium battery. This example shows using
the ADC function of the ESP32 to obtain the voltage of the external lithium
battery and display it on the LCD display.
14_Backlight_ PWM_V2.0
This example relies on the TFT_eSPI software library and can only use the
Arduino-ESP32 core software library version 2.0 (for example, version 2.0.17).
The hardware requires an LCD display and a resistive touch screen. This
example shows how the display's backlight brightness can be adjusted by the
touch slide operation of the display module while the brightness value changes.
14 _Backlight_ PWM_V3.0
This example relies on the TFT_eSPI software library and can only use the
Arduino-ESP32 3.0 core software library (for example, version 3.0.3). The
hardware requires an LCD display and a resistive touch screen. This example
shows the same functionality as the 14 Backlight PWM_V2.0 example.
15 Audio_play V2.0
This example relies on the TFT_eSPI, TIpg_Decoder, and ESP32-audiol2S
software libraries, and can only use the Arduino-ESP32 core software library
version 2.0 (such as version 2.0.17). The hardware requires an LCD display,
resistive touch screen, speaker and MicroSD card. This example shows reading
an mp3 audio file from an SD card, displaying the file name to the LCD, and
playing it in a loop. There are two touch button ICONS on the display, the
operation can control the audio pause and play, the operation of the other can
control the mute and play sound. The following is an example:
A. Copy all mp3 audio files in the "mp3" directory in the sample folder to the
MicroSD card. Of course, you can also not use the audio files in this
directory, and find some mp3 audio files, it is important to note that the

example program can only loop a maximum of 10 mp3 songs.

www.lcdwiki.com 16 /29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

B. Insert the MicroSD card into the SD card slot of the display module;

C. Power on the display module, compile and download the example
program, you can see that the song name is displayed on the LCD screen,
and the external speaker plays sound. Touch the button icon on the
operating screen to control the audio playback.

16_Audio_WAV_V2.0
This example relies on the XT_DAC_Audio software library and can only use
the Arduino-ESP32 core software library version 2.0 (for example, version
2.0.17). Hardware requires speakers. This example shows playing an audio file
in wav format using the ESP32. The steps to use this example are as follows:

A. Edit the audio file that needs to be played, copy the generated audio data
to the array of the "Audio_data.h" file in the sample folder (the array can be
renamed, and the sample program should also be synchronized). Note that
the edited audio file should not be too large, otherwise it will exceed the
internal Flash capacity of the ESP32 module. This means editing the length
of the audio file, the sampling rate and the number of channels. Here is an
audio editing software called Audacity, which you can download from the
Internet.

B. Power on the display module, compile and download the example

program, you can hear the speaker playing audio.
17 _Buzzer_PiratesOfTheCaribian
This example does not rely on any third-party software libraries, and the
hardware requires speakers. This example shows the use of different
frequencies to pull the pin up and down to simulate acoustic vibration, which
causes the horn to sound.
18 WiFi_scan

This example relies on the TFT_eSPI software library, and the hardware

requires an LCD display and the ESP32 WIFI module. This example shows the

ESP32 WIFI module scanning the surrounding wireless network information in

www.lcdwiki.com 17 /29

LCDWIKI

E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

STA mode. The scanned wireless network information is displayed on the LCD
display. Wireless network information includes SSID, RSSI, CHANNEL, and
ENC_TYPE. After the wireless network information is scanned, the system
displays the number of scanned wireless networks. A maximum of the first 17

scanned wireless networks are displayed.

19 WiFi_AP

This example relies on the TFT_eSPI software library, and the hardware
requires an LCD display and the ESP32 WIFI module. This example shows the
ESP32 WIFI module set to AP mode for WIFI terminal connection. The display
will display the SSID, password, host IP address, host MAC address and other
information set in AP mode of ESP32 WIFI module. Once a terminal is
successfully connected, the display will display the number of terminal
connections. Set your own ssid and password in the "SSID" and "Password"

variables at the beginning of the sample program, as shown below:

/ /AP mode SSID and PWD
onst char *ssid = "ESP32 AP|:
onst char *password = "':

IR R R T

W O T S ST

Figure 3.11 Setting SSID and password in AP mode

20_WiFi_SmartConfig

This example relies on the TFT_eSPI software library, and the hardware
requires the LCD display, ESP32 WIFI module, and BOOT button. This example
shows the ESP32 WIFI module in STA mode, through the EspTouch mobile
phone APP intelligent network distribution process. The entire sample program

running flow chart is as follows:

www.lcdwiki.com 18 /29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

| Start

Read the WIFI save flag bit

Whether the WIFI save
flag bit is true

APP WIFI SmartConfig

Get WIFI information,
Automatic WIFI connection

NO

SmartConfig successful

Whether the automatic

WIFI connection is successful

Save WIFI information

Detects BOOT key events

The BOOT key is pressed

Whether it is longer than 3 seconds

YES

Clear saved WIFI information,
Reset the ESP32 main control

Figure 3.12 WIFI SmartConfig example program operation flow chart

The steps for this example program are as follows:

A. download the EspTouch application on the mobile phone, or copy the
installation program "esptouch-v2.0.0.apk" from the folder "7- T B &4
_Tool_software " in the data package (only Android installation program,
IOS application can only be installed from the device), The installer can
also be downloaded from the official website.

Downloadwebsite:

https://www.espressif.com.cn/en/support/download/apps

www.lcdwiki.com 19/29

https://www.espressif.com.cn/en/support/download/apps

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

B. power on the display module, compile and download the sample program,
if ESP32 does not save any WIFI information, then directly enter the
intelligent distribution mode, at this time, open the EspTouch application
on the mobile phone, enter the SSID and password of the WIFI connected
to the mobile phone, and then broadcast the relevant information by UDP.
Once the ESP32 receives this information, it will connect to the network
according to the SSID and password in the information. After the network
connection is successful, it will display information such as SSID,
password, IP address and MAC address on the display screen and save
WIFI information. It should be noted that the success rate of this
distribution network is not too high, if it fails, you need to try several times.

C. if the ESP32 has saved WIFI information, it will automatically connect to
the network according to the saved WiFi information when it is turned on.
If the connection fails, the system enters the intelligent distribution
network mode. After the network connection is successful, hold down
BOOT for more than 3 seconds, the saved WIFI information will be
cleared, and the ESP32 will be reset to perform intelligent network
distribution again.

21_WiFi_STA
This example needs to rely on the TFT_eSPI software library, the hardware
needs to use the LCD display, ESP32 WIFI module. This sample program shows
how the ESP32 connects to WIFI in STA mode according to the SSID and
password provided. This example program does the following:
A. Write the WIFI information to be connected in the variables "ssid" and

"password" at the beginning of the sample program, as shown below:

#include <TFT eSPI.h>
8 #include <WiFi.h>

0 //Manually modifying parameters

const char *ssid = "lyourssid)';

2 const char *password = “"poUrpwd’;

[T S T T Y
iy o

9]

Figure 3.13 Write WIFI information

www.lcdwiki.com 20/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

B. Power on the display module, compile and download the example
program, and you can see that ESP32 starts to connect to WIFI on the
display screen. If the WIFI connection is successful, information such as
success message, SSID, IP address, and MAC address will be displayed
on the display. If the connection lasts longer than 3 minutes, the
connection fails, and a failure message is displayed.

22_WiFi_STA_TCP_Client

This example needs to rely on the TFT_eSPI software library, the hardware

needs to use the LCD display, ESP32 WIFI module. This example program
shows the ESP32 in STA mode, after connecting WIFI, as a TCP client to TCP
server process. This example program does the following:

A. At the beginning of the example program "ssid", "password", "serverlP",
"serverPort" variables write the required connection WIFI information,
TCP serverlP address (computer IP address) and port number, as shown

in the following figure:

//Manually modifying parameters
const char ¥ssid = "lyourssid|:
const char *password = "';

const IPAddress serverIP([192,168,4,52); //The server address to 4
uintlé6_t serverPort = [8080f //8erver port number

char €t _buf[100] = {0};

Figure 3.14 Write WIFI information and TCP server information 1

B. open the "TCP&UDP test tool" or "Network debugging assistant" and
other test tools on the computer (installation package in the data package
"7-TE#MH Tool_software" directory), create a TCP server in the tool,
and the port number should be consistent with the example program
Settings.

C. Power on the display module, compile and download the example
program, and you can see that ESP32 starts to connect to WIFI on the

display screen. If the WIFI connection is successful, information such as

www.lcdwiki.com 21/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

the success message, SSID, IP address, MAC address, and TCP server
port number is displayed on the display. After the connection is successful,
a message is displayed. In this case, you can communicate with the
server.
23 _WiFi_STA_TCP_Server
This example needs to rely on the TFT_eSPI software library, the hardware
needs to use the LCD display, ESP32 WIFI module. This example program
shows the ESP32 in STA mode, after connecting to WIFI, as a TCP server by
TCP client connection process. This example program does the following:
A. Write the required WIFI information and TCP server port number in the
variables "ssid", "password" and "port" at the beginning of the example

program, as shown in the following figure:

b0 //Manually modifying parameters
1l const char *ssid = "fourssid|':
const char *password = "':

(%]

char t_buf[100] = {0};

int port =[|10000§

[BT N S)

f52)

WiFiServer server (port); //Declare server ocbjects

Figure 3.15 Write WIFI information and TCP server information 2

B. Power on the display module, compile and download the example
program, and you can see that ESP32 starts to connect to WIFI on the
display screen. If the WIFI connection is successful, information such as
the success message, SSID, IP address, MAC address, and TCP server
port number is displayed on the display. Then, the TCP server is created
and the TCP client is connected.

C. open the "TCP&UDP test tool" or "Network debugging assistant” and
other test tools on the computer (the installation package is in the
information package "7- T R#4:_Tool_software " directory), create a
TCP client in the tool (pay attention to the IP address and port number

should be consistent with the content displayed on the display), and then

www.lcdwiki.com 22/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

start to connect the server. If the connection is successful, the
corresponding prompt will be displayed, and the server can communicate
with it.
24 _WiFi_STA_UDP
This example needs to rely on the TFT_eSPI software library, the hardware
needs to use the LCD display, ESP32 WIFI module. This example program
shows the ESP32 in STA mode, after connecting to WIFI, as a UDP server by the
UDP client connection process. This example program does the following:
A. Write the required WIFI information and UDP server port number into the
variables "ssid", "password" and "localUdpPort" at the beginning of the

sample program, as shown in the following figure:

P //Manually modifying parameters

B const char *ssid = "lyourssid':

—

I const char *password = i

DU D
b char t_buf[100] = {0};

F AsyncUDP udp; //Creating UDF Objects
¥ D g]

» unsigned int localUdpPort =|10000f //Local port number

Figure 3.16 Write WIFI information and UDP server information

B. Power on the display module, compile and download the example program,
and you can see that ESP32 starts to connect to WIFI on the display screen.
If the WIFI connection is successful, information such as the success
message, SSID, IP address, MAC address, and local port number is
displayed on the display. Then create a UDP server and wait for the UDP
client to connect.

C. open the "TCP&UDP test tool" or "Network debugging assistant" and other
test tools on the computer (installation package in the information package
"7-TE®H Tool_software " directory), create a UDP client in the tool (pay
attention to the IP address and port number should be consistent with the
content displayed on the display), and then start to connect to the server. If
the connection is successful, the corresponding prompt will be displayed, and

the server can communicate with it.

www.lcdwiki.com 23/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

25 BLE scan_V2.0
This example relies on the TFT_eSPI software library and can only use the
Arduino-ESP32 core software library version 2.0 (for example, version 2.0.17).
Hardware needs to use LCD display, ESP32 Bluetooth module. This example
shows the ESP32 Bluetooth module scanning around BLE Bluetooth devices
and displaying the name and RSSI of the named BLE Bluetooth device scanned
onto the LCD display.
25 BLE scan_ V3.0
This example relies on the TFT_eSPI software library and can only use the
Arduino-ESP32 3.0 core software library (for example, version 3.0.3). Hardware
needs to use LCD display, ESP32 Bluetooth module. The functionality of this
sample program is the same as the 25_BLE_scan_V2.0 sample program.
26_BLE_server_V2.0
This example relies on the TFT_eSPI software library and can only use the
Arduino-ESP32 core software library version 2.0 (for example, version 2.0.17).
Hardware needs to use LCD display, ESP32 Bluetooth module. This example
shows how the ESP32 Bluetooth module creates a Bluetooth BLE server, is
connected by a Bluetooth BLE client, and communicates with each other. The
steps to use this example are as follows:

A. Install Bluetooth BLE debugging tools on your phone, such as "BLE
debugging Assistant", "LightBlue", etc.

B. Power on the display module, compile and download the example program,
you can see the Bluetooth BLE client running prompt on the display. If you
want to change the name of the Bluetooth BLE server device yourself, you
can modify it in the "BLEDevice::init" function parameter in the example

program, as shown in the following figure:

68 void setupBLE ()

691

70 BLEDevice::init ("') H //Create BLE device

71 pServer = BLEDevice::createServer(); //Create BLE server
12 DServer—>getCallbacks (new MwServerCallbacks({)) : Set th

Figure 3.17 Setting the Bluetooth BLE server device name

www.lcdwiki.com 24 /29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

C. open the Bluetooth on the mobile phone and Bluetooth BLE debugging tool,
search the Bluetooth BLE server device name (default is
"ESP32_BT_BLE"), and then click the name to connect, after the
connection is successful, ESP32 display module will prompt. The next step
is Bluetooth communication.

26 BLE_server V3.0
This example relies on the TFT_eSPI software library and can only use the
Arduino-ESP32 3.0 core software library (for example, version 3.0.3). Hardware
needs to use LCD display, ESP32 Bluetooth module. This example is the same
as the 26_BLE_server_V2.0 example.
27_Desktop_Display
This example program relies on the ArduinoJson, Time, HttpClient,
TFT_eSPI, TIpg_Decoder, NTPClient software libraries. Hardware needs to use
LCD display, ESP32 WIFI module. This example shows a weather clock desktop
that displays city weather conditions (including temperature, humidity, weather
ICONS, and scrolling through other weather information), the current time and
date, and an astronaut animation. Weather information is obtained from the
weather network over the network, and time information is updated from the NTP
server. This example program uses the following steps:

A. After opening the example, you must first set the tool ->Partition
Scheme to the Huge APP(3MB No OTA /1IMB SPIFFS) option,
otherwise the compiler will report an error of insufficient memory.

B. write the WIFI information to be connected in the "ssid" and "passwd"
variables at the beginning of the sample program, as shown in the
following figure. If not set, the intelligent distribution network (for the
description of the intelligent distribution network, please refer to the

intelligent distribution example program)

e S - wifi information-———-—————-—-————-
13 const char* ssid = "fyourssidl'; //WIFI name

4 const char* passwd = "',' //WIFI password
s/ -—_

www.lcdwiki.com 25/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

Figure 3.17 Setting WIFI information

C. Power on the display module, compile and download the example
program, you can see the weather clock desktop on the display screen.
28_display_phonecall
This example relies on the TFT_eSPI software library. The hardware
requires an LCD display and a resistive touch screen. This example shows a
simple dialing interface for a mobile phone, with content entered at the touch of a
button.
29 touch_pen
This example relies on the TFT_eSPI software library. The hardware
requires an LCD display and a resistive touch screen. This example shows that
by drawing lines on the display, you can check whether the touch screen is
functioning properly.
30_RGB_LED_TOUCH_V2.0
This example relies on the TFT_eSPI software library and can only use the
Arduino-ESP32 core software library version 2.0 (for example, version 2.0.17).
The hardware requires an LCD display, a resistive touch screen, and RGB
tri-color lights. This example shows the touch of a button to control RGB light on
and off, flicker, and brightness adjustment.
30_RGB_LED_TOUCH_V3.0
This example relies on the TFT_eSPI software library and can only use the
Arduino-ESP32 3.0 core software library (for example, version 3.0.3). The
hardware requires an LCD display, a resistive touch screen, and RGB tri-color
lights. This example shows the same functionality as the
30 RGB _LED TOUCH_ V2.0 test example.
31 LVGL_Demos
This example needs to rely on TFT_eSPI, Ivgl software library, hardware
needs to use LCD display, resistance touch screen. This example shows the five

built-in Demo features of the Ivgl embedded Ul system. With this example, you

www.lcdwiki.com 26/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

can learn how to port the lvgl to the ESP32 platform and how to configure the
underlying devices such as the display and touch screen. In the sample program,
only one demo can be compiled at a time. Remove the comments of the demo
that needs to be compiled, and add comments to other demos, as shown in the

following figure:

111 // uncomment one of these demos

112 1v_demo_widgets () ;
113 // 1lv_demo benchmark();
114 // 1lv_demo keypad encoder();

115 // 1v_demo music();

// 1v demo stress();

Figure 3.18 Selecting Ivgl demo

Ilv_demo_widgets: Test demos of various widgets
Iv_demo_benchmark: Performance benchmark demo
Ilv_demo_keypad_encoder: Keyboard encoder test demo
Iv_demo_music: music player test demo
Iv_demo_stress: Stress test demo
Note: The first time this example is compiled, it takes a long time, about 15
minutes.
32_WiFi_webserver
This example needs to rely on TFT_eSPI software library, hardware needs
to use LCD display, RGB three-color lights. This example shows setting up a
web server, and then accessing the web server on the computer, manipulating
the icon on the web interface to control the RGB three-color light. The steps to
use this example are as follows:
A. Write the WIFI information to be connected in the variables "ssid" and

"password" at the beginning of the sample program, as shown below:

[us}

//Manually modifying parameters

% const char *ssid = '|yourssidl';

) const char *password = ourpwal s

fad B3 B

Figure 3.19 Setting WIFI information

B. Power on the display module, compile and download the example program,

www.lcdwiki.com 27 /29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-MI3270

and you can see that ESP32 starts to connect to WIFI on the display
screen. If the WIFI connection is successful, information such as success
message, SSID, IP address, and MAC address will be displayed on the
display.

C. Enter the IP address shown in the above steps in the browser URL input
field on the computer. At this time, you can access the web interface and
click the corresponding icon on the interface to control the RGB
three-color light.

Touch_calibrate
This program relies on the TFT_eSPI software library, which is specially
designed for the calibration of resistive touch screens, and the calibration steps
are as follows:
A. Open the calibration program and set the display direction of the display
screen, as shown below. Because the calibration program is calibrated
according to the display direction, this setting must be consistent with the

actual display direction.

// Set the rotation to the orientation vou wish to use i

[PV

// (the touch coordinates returned then correspond to th
tft.setRotation ;

I % T T

Moo

Figure 3.20 Setting the display direction

B. Power on the display module, compile and download the example
program, you can see the calibration interface on the display screen, then
click the four corners according to the arrow prompt.

C. After the calibration is completed, the calibration result is output through
the serial port, as shown in the following figure. At the same time, the
calibration detection interface is entered, and the calibration detection

interface is tested by drawing dots and lines.

www.lcdwiki.com 28/29

LCDWIKI E32R35T&E32N35T ESP32-32E Demo Instructions CR2024-M13270

ocowss . NN =X

-

// Use this calibration code in setup () :

uintlé_t calDatal[5] = { 252, 3653, 243, 3485, 7 }; lI
tft.setTouch (calData);

m

[¥] Autesersll [|Show timestamp

Newline *| 115200 baud ~

Figure 3.21 Calibration parameters of serial output resistance touch screen

D. After the calibration result is accurate, copy the calibration parameters of

the serial port to the example program used.

www.lcdwiki.com 29/29

